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Abstract
Background:  The hydrolysis of ATP and ADP by ecto-nucleoside triphosphate
diphosphohydrolase 1 (CD39) requires divalent cations, like Ca2+ and Mg2+. In spite of
considerable work, it is not clear whether divalent cations bind to the enzyme in the absence of
nucleotide or only as nucleotide-Me+2 complex. Here we study the protein ligands for Me+2.

Results:  When VO2+ was used as a substitute for Ca2+, the ATPase activity of soluble CD39 was
25% of that with Ca2+ as cofactor. Protein ligands of the VO2+-nucleotide complex bound to the
catalytic site of soluble CD39 were characterized by electron paramagnetic resonance (EPR)
spectroscopy. The EPR spectrum contained one species designated T with VO2+-AMPPNP as
ligand. Two species D1 and D2 were observed when VO2+-AMPCP was bound to soluble CD39.
The results suggest that species D1 and D2 represent the metal-ADP complexes at the catalytic
site of soluble CD39 corresponding to the intermediate formed during ATP hydrolysis and the
substrate for further hydrolysis, respectively.

Conclusions:  VO2+ can functionally substitute for Ca2+ as a cofactor of sCD39, and it produces
four different EPR features when bound in the presence of different nucleotides or in the absence
of nucleotide. The metal coordination for each conformation corresponding to each EPR species
is proposed, and the mechanism of sCD39 catalysis is discussed.

Background
Ecto-Nucleoside triphosphate diphosphohydrolases (E-

NTPDases, formerly called ecto-ATPases) hydrolyze nu-

cleotides in the presence of divalent cations and are in-

sensitive to inhibitors of P-type, F-type, and V-type

ATPases [1]. Three isoforms that differ in the ratio of AT-

Pase/ADPase activity are present on the cell surface [2]:

E-NTPDase1 with a ratio of 1, E-NTPDase2 with a ratio

of 10 and E-NTPDase3 with a ratio of 3–5. NTPDases are

important in many physiological processes like cell mo-
tility, adhesion, nonsynaptic information transfer, secre-

tion, regulation of hemostasis and ectokinases [1].

Understanding the enzymatic mechanisms of the NTP-

Dases will help description of their physiological func-

tions, and development of strategies to regulate the

functions of the enzymes.

The catalytic mechanism of NTPDases is not known even

though some basic facts of the catalysis have been estab-

lished. NTPDases do not form phosphorylated interme-

diates during catalysis, a conclusion also supported by

lack of vanadate sensitivity and Pi product inhibition [3–

6]. The catalytic reaction appears to be irreversible and
no partial reactions have been observed [7,8]. Divalent

cations like Ca2+ or Mg2+ are required for activity, and

maximal activity is reached when the concentrations of
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substrates and divalent cations are equal [1]. The specific

activities of NTPDases vary over a broad range from ten

thousand units for potato apyrase to less than one hun-

dred units for chicken gizzard ecto-ATPase [9,10]. Se-
quence comparisons indicate that most of NTPDases

contain five highly conserved regions, apyrase conserved

region, ACR1 – ACR5 [9,11]. However, the catalytic sites

have not been identified, although ACR1 and ACR4 have

been implicated in β- and γ-phosphate binding, respec-

tively [9].

E-NTPDase1 is also called CD39, as it was first described

as an antigen present on activated B and T lymphocytes.

Residues of ACR1 to ACR5 of CD39 have been mutated to

study the involvement of the ACR regions in catalysis.

E174 in ACR3 and S218 in ACR4 are required for catalyt-

ic function [12]. Substitution of H59 in ACR1 converted

CD39 into an ADPase in a quaternary structure depend-

ent manner [13]. Mutation of W187A in ACR3 affected

CD39 folding and translocation, while mutation of

W459A in ACR5 increased ATPase activity but dimin-

ished ADPase activity [14]. Mutations of D62 and G64 of

ACR1 and D219 and G221 of ACR4 demonstrated that

the nucleotide phosphate binding domains of NTPDases

are similar to those present in the actin/heat shock pro-

tein/sugar kinase superfamily [15]. These results suggest

that the conserved residues of the ACR1 to 5 regions are

involved in the catalytic mechanism of CD39.

The catalytic activity of CD39 is dependent on the pres-

ence of divalent cations. Since the interactions of Ca+2

and Mg+2 with proteins are difficult to study due to the

lack of spectroscopic properties, vanadyl (VIV=O)2+ has

been used as a probe of the ligands that compose Mg2+,

Ca2+, and Mn2+ binding sites of several proteins, includ-

ing carboxypeptidase [16], S-adenosylmethionine syn-

thetase [17,18], pyruvate kinase [19,20], and F1-ATPase

[21,22]. This cation specifically binds to divalent cation

binding sites of several enzymes, and in many cases

serves as a functional cofactor [23]. Vanadyl has one ax-

ial and four equatorial coordination sites relative to the

axis of the double-bounded oxygen, an arrangement that

is similar to that for Ca2+ and Mg2+. As it is known that

the A and g tensors derived from the EPR spectrum of

bound VO2+ are a direct measure of the nature of the

equatorial metal ligands [24], binding of VO2+ to CD39

could provide details about the catalytic mechanism of

CD39.

Recently we reported that a recombinant soluble CD39,

capable of hydrolyzing both ATP and ADP, was ex-

pressed and purified from insect cells [25]. Only one nu-

cleotide-binding site was identified on the purified

soluble CD39 in the presence of Ca2+ when non-hydro-
lysable nucleotide analogs were used. In this report, we

characterized the signals that were obtained from bound

VO2+ when ATP or ADP was present at the catalytic site

of the purified soluble CD39. The possible metal ligands

for VO+2 at the catalytic site are proposed and the cata-
lytic mechanism is discussed.

Results
Nucleotidase activity of purified soluble CD39 with VO2+ 
as cofactor
The ability of purified soluble CD39 to hydrolyze

VO2+ATP is shown in Figure 1. Soluble CD39 did not hy-

drolyze either ATP or ADP in the absence of VO2+ (Fig.

1A). When VO2+ was mixed with ATP at a ratio of 1:1, the

concentrations of both ADP and AMP increased and ATP

decreased as the incubation time was prolonged (Fig.

1B). The ATPase activity of sCD39 with VO2+ was about

25% of that with Ca2+ as a cofactor. Vanadyl is unstable

in aqueous solution at pH7.0 in the absence of chelator

and will precipitate out of solution as [VO(OH)2]n. The

rate of precipitation depends on the abundance and af-

finity of the chelator. This means that the actual VO2+

concentration was lower than 0.5 mM. This result indi-

cates that VO2+ can functionally substitute for Ca2+ as

cofactor for sCD39 nucleotidase activity.

Characterization of bound VO2+ ADPNP by CW-EPR
The parallel features of CW-EPR spectrum of bound

VO2+ in the presence of ADPNP, an ATP analog, are

shown in Figure 2a. This spectrum shows 51V hyperfine
splitting and the center of the parallel transitions from

molecules with the V=O bond oriented along the mag-

netic field (A||, g||) which are strong enough to tell the

nature of VO2+ equatorial ligands [22]. Of the eight tran-

sitions that result from the parallel oriented molecules,

the -7/2 ||, -5/2||, +3/2||, +5/2||, and +7/2|| transitions

(shown in the figures from left to right, respectively) do

not overlap with perpendicular transitions. The 51V hy-

perfine splitting spectra from molecules with V=O bond

perpendicular to the magnetic field (AŸ) are much

smaller and not shown here [21]. The intensity of -5/2||
peak is used as direct measurement of the amount of

bound VO2+, since this peak is the most intense peak in

the EPR spectrum that contains contribution only from

A|| but not AŸ [21,26]. In this study, the intensities of

each bound VO2+-EPR feature were normalized to 1 mg

of protein.

VO2+ bound as the VO2+-AMPPNP complex to sCD39

produced a strong spectrum characterized by A|| of

504.25 MHz and g|| of 1.9410 (Fig. 2b), called species T

(Table 1). The best fit of EPR species T to eq 1 is one equa-

torial nitrogen from an amino group and three equatorial

oxygen ligands from carboxyl or phosphate groups (Ta-

ble 2). This result is consistent with AMPPNP binding
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strongly to a single site on sCD39 in the presence of met-

al [25].

Characterization of EPR species from VO2+-AMPCP bound 
to sCD39
Figure 3a shows the parallel features of the EPR spec-

trum of sCD39 bound VO2+-AMPCP. Two sets of parallel

transitions were observed, and the derived A|| and g||
values are listed in Table 1. One set had A|| of 521.78 MHz

and g|| of 1.937, which is defined as species D1 (Fig. 3b).

The other set displayed A|| of 490.01 MHz and g|| of

1.9435, which is called species D2 (Fig. 3c). The intensity

of species D1 accounted for 11.4% of species T from

bound VO2+-AMPPNP, and the intensity of D2 account-

ed for 7.1% of species T. The intensity ratio of species D1

over D2 was 1.6.

In order to distinguish species D1 from D2, the sample

with VO2+-AMPCP bound to sCD39 was thawed and in-

cubated at room temperature for 30 minutes, and the

VO2+ EPR spectrum was collected again. As shown in

Figure 4a and 4b, either A|| or g|| values for both species

D1 and D2 were changed. The intensity of species D1 was

not changed as it accounted for 12.1% of the intensity of

species T of the bound VO2+-AMPPNP. However, the in-

tensity of species D2 was decreased dramatically, and it

accounted for only 0.1% of the intensity of species T. The

intensity ratio of D1 over D2 increased about 75 fold to

become 120.

Figure 1
ATP hydrolysis by sCD39 with VO2+ as cofactor analyzed by
HPLC. 2 µg of sCD39 was included in each assay. A. The
reaction was conducted in the presence of 0.5 mM ATP but
without VO2+. B. The reaction was initiated by adding 0.5
mM VO2+-ATP (1:1). ATP is represented as black diamonds;
ADP as a black square; and AMP as a black triangles;

Figure 2
Parallel regions of VO2+-EPR spectrum of VO2+-ADPNP
bound to sCD39. a. One mole equivalent of VO2+-ADPNP
was added to 2.8 mg of sCD39 as described in Experimental
Procedures. EPR conditions were as follows: field modulation
frequency, 100 kHz; modulation amplitude, 0.97 G; receive
gain, 2 × 104; sweep time 5.243 s; time constant 1.28 ms;
micropower, 1.0 mW; microwave frequency 9.40386 GHz,
1000 scans; temperature; 125 K. b. Simulated spectrum was
generated by the program QPOWA with the experimental
conditions above and A|| = 504.25 MHz, g|| = 1.9410 for Spe-
cies T.
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There are two sets of equatorial ligands that can fit well

the EPR species D1 according to Eq 1 (Table 2). One set

includes two equatorial oxygen from two water mole-
cules, one equatorial oxygen from a carboxyl group or

phosphate, and one equatorial nitrogen from an amino

group. The other set contains one equatorial oxygen

from water and three equatorial oxygens from carboxyl

groups or phosphate. The best fit for the EPR species D2

to eq 1 is one equatorial oxygen from a hydroxyl group

and three equatorial oxygens from carboxyl groups or

phosphate.

EPR characteristics of sCD39 bound VO2+-ATP
In order to capture the bound VO2+-EPR signal before

the enzyme completely turned over, sCD39 and VO2+-

ATP were mixed on ice, immediately transferred into the

EPR tube and frozen. The entire process took about 15

seconds. The parallel portion of the collected VO2+-EPR

spectrum is shown in Figure 5a. VO2+-ATP complex

bound to sCD39 produced an EPR spectrum with A|| of

489.5 MHz and g|| of 1.9455, which corresponded to spe-

cies D2 (Fig. 5b). The signal intensity from the bound
VO2+-nucleotide complex accounted only for 7.5% of

that of species T from bound non-hydrolysable VO2+-

ADPNP complex.

The same sample made from mixing VO2+-ATP and

sCD39 was incubated at room temperature for 30 min-

utes, then the VO2+-EPR spectrum was generated as

shown in Figures 4c and 4d. The EPR parameters de-

rived from this VO2+-EPR spectrum were 489.5 MHz for

A|| and 1.9455 for g|| respectively, which is consistent

with species D2. However, the signal intensity decreased

about 37.5 fold compared to that obtained before room

temperature incubation.

Table 1: Experimental signal intensity and 51 V-hyperfine parameters derived from the VO2+ bound to sCD39 under different 
conditions.

Intensity Experimental Parameters
Nucleotide Species

(% of VOADPNP) g|| A||

VOADPNP T 100 1.9410 504.25
VO2+ V 20.3 1.9460 486.00

D1 11.4 1.9370 521.78
VOAMPCP

D2 7.1 1.9435 490.01
VOAMPCP* D1 12.1 1.9350 521.78

VOATP D2 7.5 1.9455 489.5
VOATP* D2 0.2 1.9455 489.5

* Samples were incubated at room temperature for 30 minutes.

Table 2: Best fits of the 51 V-hyperfine parameters (Eq. 1) of VO2+ bound to various equatorial ligands of sCD39 under different 
conditions.

Calculated
Species Most Probable Equatorial Ligands

g|| A||

T 1.9445 504.25 RNH2 RCOO Pi Pi
D1 1.9390 520.95 H2O RCOO Pi Pi
D2 1.9435 490.01 ROH RCOO RCOO Pi
V 1.9500 485.36 ROH ROH H2O H2O
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Free VO2+ binding to sCD39 characterized by CD-EPR
Like other metals (Ca2+ and Mg2+), free VO2+ inhibited

the nucleotidase activities of sCD39 at high concentra-

tion (data not shown). VO2+ in the absence of any nucle-

otides was added to sCD39 at 1:1 molar ratio. The parallel

transitions of bound VO2+-EPR spectrum are shown in

Figure 6. The features derived from the VO2+-EPR spec-

trum were 486 MHz for A|| and 1.946 for g||, which was

designed as species V (Fig. 6b). The signal intensity of

bound VO2+ accounted for 20.3% of that from the bound

VO2+-ADPNP complex.

The best fit of equatorial ligands for species V according

to eq 1 is two equatorial oxygen from hydroxyl groups

and another two equatorial oxygen from two water mol-

ecules.

Discussion
Vanadyl has been used to estimate the types of groups

that serve as metal-ligands in F1-ATPase and other en-

zymes [16,18,19,21] because the g and A tensors of the
51V hyperfine couplings are approximately a linear com-

bination of tensors from each type of group that contrib-

utes an equatorial ligand [24,27]. By studying the EPR
spectra of bound VO2+ in the presence of different nucle-

otides, we show that the interaction of soluble CD39 with

ATP is different from that with ADP.

It is not surprising that VO2+ can functionally replace

Ca2+ in the hydrolysis of both ATP and ADP by soluble

CD39, although the enzymatic activity is about 25% of

that with Ca2+ as the cofactor, since F1-ATPase also hy-

drolyzes ATP at a decreased rate when VO2+ replaces

Mg2+[21].

Figure 3
Parallel regions of VO2+-EPR spectrum of VO2+-AMPCP
bound to sCD39. a. One mole equivalent of VO2+-AMPCP
was added to 6.5 mg of sCD39 prepared as in Experimental
Procedures. EPR conditions were as follows: field modulation
frequency, 100 kHz; modulation amplitude, 0.97 G; receive
gain, 2 × 104; sweep time 5.243 s; time constant 1.28 ms;
micropower, 1.0 mW; microwave frequency 9.40677 GHz,
1600 scans; temperature; 125 K. b. Simulated spectrum was
generated by the program QPOWA with the experimental
conditions above and A|| = 521.78 MHz, g|| = 1.9370 for Spe-
cies D1. c. Simulated spectrum was generated by the pro-
gram QPOWA with the experimental conditions above and
A|| = 490.01 MHz, g|| = 1.9435 for Species D2.

Figure 4
Parallel -5/2|| region of VO2+-EPR spectra in the presence of
different nucleotides and conditions. a. One equivalent of a 1
: 1 mole ratio of VO2+-AMPPCP was added to sCD39, and
incubated on ice for 5 minutes. b. The sample from a was
thawed and incubated at room temperature for 30 minutes
before collecting data again. c. One equivalent of a 1 : 1 mole
ratio of VO2+-ATP was added to sCD39, and frozen immedi-
ately in liquid nitrogen. d. The sample from c was thawed and
incubated at room temperature for 30 minutes before col-
lecting data again.
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The EPR features of VO2+ are able to reveal some details

about how CD39 hydrolyzes ATP and ADP. A single EPR

feature, species T, was observed when ADPNP (a non-

hydrolyzable analog of ATP) complexed with VO2+ was
bound to sCD39, which is consistent with the presence of

only one nucleotide binding site [25]. The g and A ten-

sors derived from species T are 1.9410 and 504.25 MHz

respectively, which can be fitted best with one amino

group and three groups combined from carboxyl and

phosphate groups as the equatorial ligands of the bound

VO2+ on sCD39. In accordance with metal-ATP complex

coordination on other enzymes that hydrolyze ATP, like

F1-ATPase [22,28], the γ- and β-phosphate of ATP most

likely bind to VO2+ while the third carboxyl group is con-

tributed by a side-chain of aspartate or glutamate of

sCD39. It is not unusual for the ε-amino group of lysine

to coordinate with metals in enzymes. It has been report-

ed that the amino group serves as one of VO2+ equatorial

ligands in CF1-ATPase [21], pyruvate kinase [19,20],

AdoMet synthetase [17,18], and carboxypeptidase [16].

Thus one amino group from lysine, one carboxyl group

from aspartate or glutamate, and two oxygens from the

phosphates of ADPNP serve as the equatorial ligands of

sCD39 bound VO2+ in the presence of ADPNP.

In the presence of AMPCP, bound VO2+ produced two

EPR features, species D1 and species D2 that are separat-

ed by about 30 MHz. As we have reported that sCD39 re-

leases intermediate ADP before ADP is further cleaved
during ATP hydrolysis [25], sCD39 probably has two

conformations that bind metal-ADP complexes, one is

the conformation that releases the ADP intermediate,

and another that recruits intermediate ADP back to the

enzyme for further hydrolysis to AMP. However, intact

CD39 does not release intermediate ADP during ATP hy-

drolysis, suggesting that there is only one ADP binding

site on each CD39 monomer in the intact protein [2,25].

The two EPR species observed with VO2+-AMPCP prob-

ably correspond to the two different conformations of

bound ADP at the same catalytic site on sCD39. The sig-

nal intensity of the bound VO2+-AMPCP EPR spectrum

indicates that species D1 is dominant over species D2. In

order to further assign species D1 and D2 to the two dif-

ferent conformations, two experiments were done (Fig.

5). Incubation of sCD39 with VO2+-AMPCP at room tem-

perature resulted in a dramatic decrease of the intensity

of species D2, while the signal intensity of species D1 re-

mained unchanged. These data indicate that VO2+-AM-

PCP was released from the conformation corresponding

to species D2; however, the conformation corresponding

to species D1 still had bound VO2+-AMPCP. More evi-

dence for two conformations of the enzyme was obtained

from the EPR spectra of bound VO2+-ATP. No species T

was found presumably because ATP was converted to
ADP before the sample was frozen. Only species D2 was

Figure 5
Parallel regions of VO2+-EPR spectrum of VO2+-ATP bound
to sCD39. a. One mole equivalent of VO2+-ATP was added
to 5.7 mg of sCD39 prepared as in Experimental Procedures.
EPR conditions were as follows: field modulation frequency,
100 kHz; modulation amplitude, 0.97 G; receive gain, 2 × 104;
sweep time 5.243 s; time constant 1.28 ms; micropower, 1.0
mW; microwave frequency 9.40658 GHz, 3000 scans; tem-
perature; 125 K. b. Simulated spectrum was generated by the
program QPOWA with the experimental conditions above
and A|| = 489.5 MHz, g|| = 1.9455 for Species D2.

Figure 6
Parallel regions of VO2+-EPR spectrum of free VO2+ bound
to sCD39. a. One mole equivalent of free VO2+ was added
to 2.6 mg of sCD39 prepared as in Experimental Procedures.
EPR conditions were as follows: field modulation frequency,
100 kHz; modulation amplitude, 0.97 G; receive gain, 2 × 104;
sweep time 5.243 s; time constant 1.28 ms; micropower, 1.0
mW; microwave frequency 9.40798 GHz, 3000 scans; tem-
perature; 125 K. b. Simulated spectrum was generated by the
program QPOWA with the experimental conditions above
and A|| = 486.00 MHz, g|| = 1.9460 for Species V.
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observed and its intensity decreased as the incubation

time was prolonged. We suggest that species D2 corre-

sponds to the conformation that releases ADP as an in-

termediate product and species D1 corresponds to the
conformation that binds ADP as a substrate. The lower

signal intensities of species D1 and D2 compared to that

of species T suggest that the affinity of sCD39 for ADP or

its analog AMPCP is lower than that for the ATP analog

ADPNP, which is consistent with the result that only ATP

analogs were detected on sCD39 [25].

The calculated g|| and A|| values that best matched the

experimental values for species D2 suggest that one hy-

droxyl group and three oxygens derived from carboxyl

groups and phosphates are the equatorial ligands of

bound VO2+-ADP. Since the conformation correspond-

ing to species D2 is found in the presence of ATP and is

likely to be the conformation that releases bound VO+2-

ADP, it is likely that the VO+2 ligands are one phosphate

and two carboxyl groups [25]. When ADP is the substrate

and generates species D1, one water molecule and a com-

bination of three groups between carboxyl groups and

phosphates serve as the equatorial ligands of bound

VO2+ on sCD39. The probable combination of carboxyl

groups and phosphates for species D1 is one carboxyl

group and two phosphates since VO2+ complexes ADP

through two phosphates before VO2+-ADP is bound to

the enzyme.

The site directed mutagenesis studies on CD39 and other

members of the CD39 family give some hints about the

possible residues that serve as metal ligands at the cata-

lytic site of sCD39. The changes of D62 on ACR1, E174 on

ACR3, D213 (D219 in HB6) and S218 on ACR4 dramati-

cally decrease both ATPase and ADPase activities of

CD39 [12,15]. Figure 7 summarizes the possible coordi-

nation of Ca2+ from the data of species T, species D1, and

species D2 in the different situations of sCD39 catalysis.

The catalytic base attack results in cleavage of the γ-

phosphate of ATP, and one carboxyl group replaces the γ-

phosphate as a metal ligand (from species T to species

D2), which is accompanied by a swap of an amino group

with a hydroxyl group (S218?). This hydroxyl group

(S218?) probably interacts with the water molecule

through hydrogen bond in the conformation corre-

sponding to species D1 to hydrolyze ADP. The constant

carboxyl group that appears in all conformations of

sCD39 hydrolysis is likely contributed by D213 since it is

close to S218.

The results presented here also provide an explanation to

the free metal inhibition of CD39 catalytic activity. Free

VO2+ binds to sCD39 through two hydroxyl groups and

two water molecules that are hydrogen bonded to other
residues of sCD39. Once free VO2+ occupies the catalytic

Figure 7
Summary of the ligands at the metal coordination sites of
sCD39 during the catalytic reaction. The types of groups
shown as equatorial ligands were derived from the best fits
of 51V hyperfine values from Table 2. a. The metal ligands in
the presence of ADPNP (Species T) represent the conforma-
tion of ATP at the beginning of hydrolysis by sCD39. b. The
metal coordination sites in the presence of AMPCP (Species
D2) show the arrangement of the catalytic site prior to
release of ADP as an intermediate product. c. The metal
coordination sites in the presence of AMPCP (Species D1)
show the conformation of the catalytic site ready to hydro-
lyze ADP. d. Metal coordination in the absence of nucleotide
(Species V) showing the occupancy of the active site by free
metal with exclusion of nucleotide and consequent inhibition
of sCD39.
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site, the enzyme has to either release the metal or correct

the conformation before the substrates are recruited

properly.

Conclusions
VO2+ can functionally substitute for Ca2+ as a cofactor

for sCD39. Four different EPR spectra are obtained for

VO2+ bound in the presence of different nucleotides and

in the absence of nucleotide. The protein ligands for

VO+2 in the presence of ATP are suggested to be carboxyl

and amino groups, while those in the presence of ADP

are probably carboxyl and hydroxyl groups. The mecha-

nism of sCD catalysis is discussed. These results will pro-

vide guides for further studies of the catalytic mechanism

of NTPDases.

Materials and Methods
Reagents
ATP, ADP, ADPNP, AMPCP were purchased from Sigma

(St. Louis, MO). Zeocin, High-Five medium were pur-

chased from Invitrogen (Carlsbad, CA).

Cell culture and preparation of soluble CD39
sCD39 transfected stable HighFive™ insect cells were

cultured as described by Chen and Guidotti [25]. Soluble

CD39 were purified as described [25] with some modifi-

cations. After concanavalin A-Sepharose 4B and nickel

affinity column chromatography, the ammonium sulfate

precipitated sCD39 was collected and resuspended in
about 50 µl of 40 mM Tris-HCl (pH7.5). This sample was

loaded on a Superose-12HR gel filtration column from

Pharmacia Biotech equilibrated with 40 mM Tris-HCl

(pH7.5). The fractions containing the major peak were

collected, and the solvent was changed to 20 mM Hepes

(pH8.0), 120 mM NaCl, 5 mM KCl with an YM30 centri-

con from Millipore. The final volume of the sample was

around 200 µl, and the concentration of sCD39 was

around 0.1 mM.

Concentrations of proteins were determined using DC

Protein Assay from BIO-RAD using the provided proto-

col.

Nucleotidase activity assay and nucleotide separation by 
HPLC
The reactions were carried out in 20 mM HEPES-Tris

(pH 7.0), 120 mM NaCl, and 5 mM KCl; they were started

by adding nucleotides at 37°C. After incubation for 15

minutes, the reactions were stopped with 2% perchloro-

acetic acid

Nucleotides were separated by HPLC on an anion ex-

change column (a 10 × 0.46 mm SAX column from Rain-

in Instruments) based on the method of Hartwick and
Brown [29]. The low concentration buffer (A) was 0.08

M NH4H2PO4 (pH3.8), and the high concentration buff-

er (B) was 0.25 M NH4H2PO4 (pH4.95) with 8 mM KCl.

The gradient used was 4 min, 0–2.5% (B); 26 min, 2.5–

25% (B). Equilibration was done with buffer (A) for 10
minutes, and the flow rate was 1 ml/min.

Preparation of VO2+ solution
Vanadyl and nucleotide solution were prepared accord-

ing to Houseman et al. [21]. Dissolved molecular oxygen

was removed from solutions by purging with dry nitro-

gen gas. Stock vanadyl and nucleotide solution were

thawed on ice, and mixed at 1:1 molar ratio by vigorous

stirring. Then VO2+-nucleotide complexes were added to

purified sCD39 at 1:1 molar ratio, mixed, and incubated

for 5 minutes on ice before they were transferred into

EPR tubes. Once the samples were in EPR tubes, they

were immediately frozen in liquid nitrogen, and stored in

liquid nitrogen before using.

EPR Measurement
CW-EPR experiments were carried out at X-band (9

GHz) using a Bruker 300E spectrometer with a TE102

rectangular standard cavity and a liquid nitrogen flow

cryostat operating at 150 K. Simulations of these EPR

spectra were accomplished with the computer program

QPOWA [30,31]).

To estimate the types of groups that serve as equatorial

ligands to VO2+ in each condition, the observed values of
A|| derived from simulation of the EPR spectrum by

QPOWA were compared with the coupling constants ob-

tained from model studies [24,32] using:

A||calc = Σ niA||i/4

where i represents the different types of equatorial lig-

and donor groups, ni (=1–4) is the number of ligands of

type i, and A||i is the measured coupling constant for

equatorial donor group i [24]. Similar equations were

used to calculated g|| from a given set of equatorial lig-

ands for comparison with those derived experimentally.
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